

Student Learning Pack Little Bee (MATHEMATICS)

Resources:

Maths Topics

Article: Maths in Engineering:

From Simple Machines to Mighty Pyramids

Short Videos

Activity 1: Geometry and Tools for Engineers 🛠

Concept: Before moving heavy blocks, ancient Egyptian engineers had to use geometry and careful measurement to design the pyramid's shape and use math to manage their tools and work teams.

Part 1: Pyramid Design and Measurement (Perimeter)

The engineers of the Great Pyramid made the base a perfect square. This square base helped make sure the pyramid was strong and perfectly balanced.

- 1. Measuring the Base: If one side of the square pyramid base measures 230 meters long, what is the total distance around the entire base (the perimeter)? (Remember a square has 4 equal sides!)
 - o Calculation: 4×230 m= m

Answer: _____ meters (perimeter)

- 2. Checking the Plan: An engineer checks the side lengths of a new pyramid.
 - Side 1: 185 meters
 - Side 2: 185 meters
 - Side 3: 185 meters
 - Side 4: 185 meters
 - What is the total difference between the perimeter of this small pyramid and the perimeter of the Great Pyramid base from Question 1?
 - Calculation:
 - Small Pyramid Perimeter: 4×185 m= m
 - Difference: (Perimeter from Q1)- (Small Pyramid Perimeter)= m

Answer: _____ meters difference

Part 2: Managing Work and Tools (Multiplication and Time)

- 1. Tool Inventory: A team is responsible for moving stone blocks up a ramp. They have 7 work crews. If each crew needs 3 large ropes and 4 wooden sledges, how many total ropes are needed for the entire team?
 - Calculation: 7 crews×3 ropes/crew= ropes

Answer: _____ total ropes

- 2. Sledge Count: Using the same team (7 crews), how many total wooden sledges are needed?
 - Calculation: 7 crews×4 sledges/crew= sledges

Answer: _____ total sledges

- 3. Work Shift Time: A standard work shift for a pyramid crew is 10 hours. The workers spend 4 hours cutting stone, 3 hours moving blocks, and 1 hour eating and resting. How many hours are left in the shift for the engineer to plan the next day's work?
 - o Calculation: 10 hours-4 hours-3 hours-1 hour= hours left

Answer: _____ hours left

Activity 2: Advanced Pyramid Block Counts Concept: Ancient engineers used fractions, area, and large-scale arithmetic to calculate the size and number of blocks needed for massive structures.
Part 1: Block Counts (Addition, Subtraction, Fractions, Area, and Patterns) 1. Total Blocks: A small pyramid model has three layers. • Layer 1 (Bottom): 52 blocks • Layer 2 (Middle): 35 blocks • Layer 3 (Top): 13 blocks • Calculation: 52+35+13= blocks Total Blocks: blocks
2. If an engineer plans to use 2,400,000 total blocks for the pyramid, and they have already moved a quarter of the blocks, how many blocks are left to move? Answer: blocks left
 3. a) Bottom Layer Blocks (Area): The pyramid's bottom layer (Layer 1) is a large square measuring 400 meters on each side. If engineers use cube blocks that measure 2 meters on each side, how many blocks are needed to cover one side of the bottom layer? Calculation: Total Length of one side (400 m) ÷ Block side (2 m) = Blocks per side Answer: blocks per side
 b)How many blocks are there on the bottom layer? Calculation (Use the area of a square: number of blocks per side x number of blocks per side) Answer: blocks
 c) Layer Reduction (Pattern): The pyramid is built layer by layer. If each subsequent layer has 2 blocks less on each side than the layer directly below it, what is the side length (in blocks) of Layer 10? Calculation: Layer 1 Side Length (from Q2): blocks Total Reductions needed (for 9 layers): 9×2= blocks Layer 10 Side Length: (Layer 1 Side) - (Total Reductions) = blocks Answer: blocks

Part 2: Calculating Total Weight (Simple Multiplication)

	1. Heavy Lift: An engineer needs to move 5 very large foundation blocks. Each block
	weighs 2,000 kg. What is the total weight of the 5 blocks?
	 Calculation: 5×2,000 kg= kg
	Total Weight: kg
	2. Small Stone Weight: A worker can pull 10 kg of force. If 3 workers pull together, hov
r	much total weight can they pull (without a ramp)?

Calculation: 3×10 kg= kg
 Total Pulling Force: _____ kg

Concept: Engineers use simple machines like the Inclined Plane (Ramp) to make work easier by spreading the force needed over a longer distance. This helps us move heavy objects, like the giant stones for the pyramids!

Part 1: Workers and Weight (Division Practice)

A typical stone block fo	r the Great Pyramid	weighed about	1,000 kg. (One strong
Egyptian worker could	pull 10 kg of weight.			

A typical stone block for the Great Pyramid weighed about 1,000 kg. One strong
Egyptian worker could pull 10 kg of weight.
1. Direct Lift Challenge: If the workers had to lift the stone block straight up without a
ramp, how many workers would be needed?
 Calculation: 1,000 kg÷10 kg/worker= workers
Answer: workers
2. The Ramp's Advantage: The engineers built a long ramp that made the job 10
times easier. If the job is 5 times easier, you need 5 times fewer workers!
 Calculation: (Answer from Question 1)÷5= workers
Answer: workers
3. Find the Force: If a stone block needs 900 kg of force to move directly, but a special
machine makes the job 9 times easier, how much force is actually needed now?
 Calculation: 900 kg÷9= kg
Answer: kg
Part 2: Measurement and Comparison & Simple Machines (Simple Subtraction and
Ratios)
1. The top of a pyramid is 120 meters high. The first layer of stones is only 5 meters
high. How much height is left to build after the first layer?
 Calculation: 120 m-5 m= m
Answer: meters
2. If every layer of stone is 5 meters high, how many total layers are there in the entire
120-meter pyramid?
 Calculation: 120 m÷5 m/layer= layers
Answer: layers
3. If each 3-meter-high stone were used in the layers instead, how many more layers
would there be in the same pyramid of 120m high?
Answer:layers
4. True or False: Two ramps are built to the same height (1 meter). A heavy stone (100
ka) is pushed up each ramp

- kg) is pushed up each ramp.
 - Ramp A (Short): 3 meters long. It takes 4 workers and 10 minutes to move the stone.
 - Ramp B (Long): 6 meters long.

Statement: Because Ramp B is twice as long as Ramp A (6m÷3m=2), you will nee	∍d
more than 4 workers OR more than 10 minutes to push the stone to the top.	

True or False? _____